Climate change

What lies in the future?

Cormac O’Rafferty (WIT)
Overview

I Global warming
 Multiple lines of evidence

II Natural climate cycles
 Paleo-climatology

III The contribution of man
 The enhanced greenhouse effect

IV What lies in the future
 Projections, fixes and skepticism

John Tyndall (1820-1893)
Greenhouse gases
I Climate vs weather

Weather
- State of the atmosphere
- Short-term variation
- Regional variation

Climate
- Long-term trends (min. 30-yr)
- Large regions
- Global trends

Frequency of min. August temp., Texas

Variables: Air and water temperature, precipitation, snowfall
Climate change?

- **Long-term variation in climate elements**
 - *Is the global climate of 1900-1950 different from 1950-2010?*

- **Parameters**
 - Air temperature (land, sea)
 - Ocean temperature
 - Ice-melt (land, sea)
 - Sea level

- *Heat ≠ temperature*

Do trends in different variables agree?
1. Surface temperature record
- one test of climate change
- oldest measurements, largest dataset
- average of many stations around globe

Relative measurement
- measure relative to benchmark
- temperature anomaly
- ground data + satellite data

1906-2005: + 0.74 °C/century
1950-2005: + 1.3 °C/century

acceleration
Ocean temperatures

2. Ocean temp record
 1-4 km depth
 Mixed layer and deep ocean

 - Rising over the past few decades
 Small rise
 Large heat capacity of water
 Large oceans

 - Most warming occurs in oceans

 - No slowing in temp rise
Sea levels

Test for sea level rise:

- Melting of land ice
- Thermal expansion of water
- Changes in water stored on land

Results

- Sea level risen by + 15 cm/cent
- Past 40 years: + 1.8 cm/decade
- Past 10 years: + 3.1 cm/decade

Global annual average sea-level anomaly
Ice-melt (land and sea)

- Glacier melt
- Ice sheet melt (both poles)
- Sea-ice melt (arctic)

Total melt → sea level rise 100m
Conclusions

Global warming (1900-2010)

- Surface temperature (land, sea): up
- Ocean temperature: up
- Ice melt (land): up
- Ice melt (sea): up
- Sea level: up

Different datasets
Different uncertainties/errors
Independent lines of evidence

Clear trend in different variables

Global Warming (1900-2010)

Five Year Average

Annual Average
II Natural climate cycles

- Climate has changed in the past
 Both warmer and cooler
 Ice cores and ocean sediments

- Ice ages and interglacials
 Ice age temp only 5 °C colder

- Warming faster than cooling
 Sawtooth function
 Positive feedbacks
 Note correlation with CO2
Natural cycles (1): tectonics

- **Tectonic motion**

 Motion of the continents

- **Affects the earth’s albedo**

 Affects the ice sheets
 Varies the distribution of solar energy

- **Affects ocean circulation**

 North Atlantic Drift

Mismatch: timeframe = millions of years
Natural cycles (2): solar activity

- **Solar sunspots/storms**

 Variation of 0.1% every 11 years

 Current max smaller than expected

- **Small effect on climate**

 Rapid effect, slow response

 Possible trigger for mini-ice ages

 Longer cycles not known

Mismatch: short timeframe, cooling effect

Solar output (1985-2020)
Natural cycles (3): earth’s orbit

- **Orbit cycles**
 Eccentricity of earth’s orbit changes
 Change in earth-sun distance
 100,000 year cycle

- **Explanation for ice ages**
 Correlates well with ice-age cycles
 Contributing factor
 Amplified by greenhouse effect

Mismatch: timeframe too long

Earth's orbit over 100,000 years
Milankovitch cycles
Natural cycles (4): internal

Climate change from internal factors

- **El Nino**
 - **Duration**: one year
 - **Frequency**: every few years
 - **Warming**: a few tenths of a degree

- **La Nina**

- **Similar timeframe**
 - **Cooling effect**

Mismatch: timeframe too short
III The contribution of man

- **Earth receives energy from the sun**

 Solar constant \(S = 1360 \text{ W/m}^2 \)

 Subtract albedo \(\alpha = 0.3 \)

- **Warm earth radiates energy back to space**

 \[
 E_{\text{out}} = E_{\text{in}} \]

 \[
 S(1-\alpha)/4 = \sigma T^4 \]

 \[
 T = -15 \degree \text{C} \]

 What is missing?
The role of the atmosphere

- Atmosphere is transparent to solar radiation but absorbs infra-red
- Radiation from earth absorbed
 Re-emitted towards earth
- Atmosphere acts as blanket
 Earth is warmed by sun + atmos

The greenhouse effect
The greenhouse effect and the planets

Mercury: close to the sun but no atmosphere

Venus: much further away but much hotter

Mars: little atmosphere, much colder

Earth: between Mars and Venus

The moon is cold!

<table>
<thead>
<tr>
<th>Planet</th>
<th>Solar constant (W/m²)</th>
<th>Albedo</th>
<th>Observed surface temperature (K)</th>
<th>Inflected n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>10,000</td>
<td>0.1</td>
<td>452</td>
<td>0.052</td>
</tr>
<tr>
<td>Venus</td>
<td>2,650</td>
<td>0.7</td>
<td>735</td>
<td>82</td>
</tr>
<tr>
<td>Earth</td>
<td>1,360</td>
<td>0.3</td>
<td>289</td>
<td>0.65</td>
</tr>
<tr>
<td>Mars</td>
<td>580</td>
<td>0.15</td>
<td>227</td>
<td>0.22</td>
</tr>
</tbody>
</table>
The chemistry of the atmosphere

Nitrogen (N_2): 78% (inert)
Oxygen (O_2): 21% (unique)
Argon (Ar): 1% (inert)

- Do not absorb in UV or IR
- Do not warm surface
- Not greenhouse gases
- Play little role in climate

What gases cause the greenhouse effect?
Earth’s greenhouse gases

1. **Water vapour** \((H_2O)\): [0.2 – 4.0 %] at surface
 - Evaporation from oceans, decreases rapidly with height

2. **Carbon dioxide** \((CO_2)\): 0.039% in 2010 (390 ppm)
 - Animal and plant exhalation, emissions from fossil fuels

3. **Methane** \((CH_4)\): 1.8 ppm (2010)
 - From wetlands, animals, agriculture, fossil fuels

4. **Nitrous oxide** \((N_2O)\): 0.3 ppm (2010)
 - Fertilizer and natural sources

5. **Ozone** \((O_3)\): 10 ppb (surface)– 10 ppm (stratosphere)
 - UV protection in high atmosphere, pollutant at low atmosphere

6. **Halocarbons** (CFC, HCFCs): 10 ppb
 - Synthetic industrial chemicals (refrigerants etc)

John Tyndall (1820-1893)

\(CO_2 = \text{most abundant non-condensing GHG}\)
Monitoring carbon dioxide

- **Keeling Curve (1950 -)**

 CO_2 from industry?

 Direct measurement (Mauna Loa)

- **The carbon cycle**

 Photosynthesis

 Plants absorb CO_2 from atmos

 $CO_2 + H_2O + $ sunlight $\rightarrow CH_2O + O_2$

 Respiration

 Animals, bacteria consume plants

 $CH_2O + O_2 \rightarrow CO_2 + H_2O + $ energy
CO₂ and fossil fuels

- Fossils formed when plants buried before respiration
- Stored in rock reservoirs; subject to intense heat and pressure
- Digging up and burning fossilized carbon releases energy
- Also releases CO₂ into atmos.

Flux from fossil fuels: 6 GtC/yr

- Much larger than volcano cycle
- Buildup of CO₂ in atmos.
- Increase of 40% from 1850
The smoking gun

- **Compare CO$_2$ rise with fossil fuel use**
 - *Strong correlation*

- **Identify age of CO$_2$**
 - *Radioactive dating using C13 and C14*
 - *Significant portion millions of years old*

- **Conclude CO$_2$ rise from fossil fuels**

 Note: 50% of CO$_2$ added to atmos. stays there

Emissions output with CO$_2$ overlay
Other factors

- Other GHGs (warming)
 - CO₂ presently dominates

- Clouds (dynamic)
 - Warming and cooling
 - Net cooling

- Pollution (cooling)
 - The china syndrome

- Land use (deforestation)
More evidence

1. Measure E_{out} of atmosphere
 - Function of wavelength, time
 - Satellite measurements (1970 -)
 - Clear dip in microwave region
 - Clear increase in dip over 4 decades

2. Measure T of atmosphere
 - Function of height
 - Stratosphere cooling
 - Clear signals of greenhouse effect

Radiation from earth
Conclusions

1. Multiple lines of evidence for warming
 Surface temps, ocean temps, sea-level rise, ice melt

2. Multiple lines of evidence for enhanced GHG effect
 CO$_2$ increase, radioactive dating, wavelength of absorbed radiation, stratospheric cooling

Conclude: (IPCC 2007)
Most of the warming since 1950 very likely (90% prob) due to increase in GHG conc
Expect rise of 2-6 °C by 2050
IV The future

\[
\text{CO}_2 \text{ emitted} = \text{pop} \times \text{affluence} \times \text{tech}
\]

\[IPAT \]

- \(P \times A = \text{energy required} \)
 - Population growth
 - Affluence growth

- Technology = GHG emitted/$
 - Carbon intensity \times \text{energy intensity}
 - Tends to decrease

Net effect: large increase in emissions
IPCC scenarios

- **Continued emissions**
 Four emissions scenarios

- **Committed warming**
 Already in the pipeline

- **Future warming**
 2-6 °C by 2050
 Worst case scenarios

- **Actually worse again**
 Feedbacks and tipping points
Climate feedbacks

- **Reduced albedo**

 Melting of ice sheets reduces reflectivity

- **Reduced permafrost**

 Releases methane and CO₂

- **Ocean vents**

 Release of methane from ocean vents

- **Tipping points**

 Past climates show accelerated warming
The longterm future

- **Continued emissions**

 Slow removal of CO$_2$ from atm/bios/ocean system

- **Peak warming**

 Fossil fuels finite: peak around 2100
 Some delay due to fracking
 Major new threat to climate

- **Future warming**

 Climate for the next thousand years
Consequences

- **Prolonged drought, desertification**

 Africa, USA, Australia

- **Chronic flooding**

 China, India, Bangladesh, Tuvulu

 Poorest worst affected

- **War**

 Longterm conflicts over resources

- **Frequent extreme events**

 Warmer air holds more moisture
Fixing climate

- **Reduce GHG emissions**
 - Reduce fossil fuel use
 - Remove fossil fuel subsidies
 - Reduce hydraulic fracking

- **Impose international targets**
 - Developed vs developing nations
 - Concerted global action

- **Invest in renewable energy**
 - Increase subsidies for renewables
 - Create climate of investment
 - Economics based on sound science
Renewables

- **Biofuels** 2nd, 3rd generation
- **Hydroelectric**
- **Wind energy**
- **Solar energy**
- **Tidal energy**
 - Longterm promise?
- **Nuclear energy**
 - Pebble reactors

![Renewable Energy as Share of Total Primary Energy Consumption, 2010](image)

Source: U.S. Energy Information Administration / Annual Energy Review 2010
Climate skepticism

- ‘It’s just a theory’

 Role of evidence misunderstood

- Media discussions poor/biased

 Expertise vs opinion or vested interest

- Opposition from ff industry

 Lobbyists, propagandists

- Resistance from politics

 Conservative values

Figures of influence
Climate controversy

- **Hockey-stick controversy**
 - Medieval warm period inaccurate?
 - Contested by conservative think tanks

- **Complex science**
 - Ice cores, tree rings, ocean sediments
 - Vindicated by many studies

- **Climategate controversy**
 - Hacked emails - fake controversy
 - Exploited by conservative media
 - Prevented agreement at COP 2009
Climate and tobacco

- Dangers of smoking understood early on
 Research results clear from 1950s

- Strongly contested by tobacco industry
 Industry experts, scientists

- Media wars, PR wars
 Doubt is our product

- Same tactics for climate science
 Heartland Institute

Conservative politics
Summary

- **A clear and present danger**

 Action required

- **Understood by scientists**

 Clear solution (difficult)

- **Not understood by society**

 Lack of knowledge or trust in science

 Influence of politics, lobbyists and the media

- **Prognosis poor**

 No solution without acceptance