Einstein, the expanding universe and the big bang

Paradigm shift or slow dawning?

Cormac O’Raifeartaigh FRAS

223rd AAS meeting, Washington 5/01/14
Astronomy Ireland, Dublin, 13/01/14
A drama in three acts?

- **A brief history of observation (1912-1931)**
 - The redshifts of the spiral nebulae (Slipher)
 - The distances to the nebulae (Hubble)
 - The Hubble graph of 1929

- **A brief history of theory (1915-1931)**
 - The static universes of Einstein and de Sitter
 - The dynamic universes of Friedman and Lemaître

- **An expanding universe? (1930)**
 - Explorations of a dynamic universe (1927-35)
 - Slow acceptance by physics community (1935-65)

- **A slow dawning? Acts IV and V**

Many other actors
I. The starry nebulae

- Observed by Marius (1614), Halley, Messier

- Island universes? Kant, Laplace (1755-96)
 Collections of stars at immense distance?
 Are stars born in the nebulae?

- Wilhem Herschel
 36-inch reflecting telescope
 Catalogue of a thousand (1786)

- Earl of Rosse
 72-inch reflecting telescope (1845)
 Some nebulae have spiral structure, stars

Problem of resolution, distance
The spectra of the nebulae

- **Photography and spectroscopy (19th cent)**
 Emission and absorption lines of celestial objects

- **Composition of the stars and planetary nebulae**
 William Huggins

- **Radial motion of the stars**
 Doppler effect
 William Campbell

- **Spectroscopy of spiral nebulae?**
 Information on evolution of solar system

- **Difficult to resolve**

\[\frac{\Delta \lambda}{\lambda} = \frac{v}{c} \]
Slipher and the spiral nebulae

- **Analyse light of the spiral nebulae? (1909)**
 Lowell Observatory; evolving solar system?

- **Slipher reluctant**
 24-inch refractor: larger telescopes failed

- **Experiments with spectrograph camera**
 Good results with fast camera lens

- **Clear spectrum for Andromeda nebula (1912)**
 Significantly blue-shifted; approaching at 300 km/s?

- **Many spiral nebulae red-shifted (1915)**
 Standing ovation (AAS, 1914)
 Attended by Hubble
Redshifts of the nebulae

• **Spectra of 25 spirals (1917)**
 Large outward velocities
 Some receding at 1000 km/s

• **Much faster than stars**
 Gravitationally bound by MW?

• **Island universe debate**
 “Island universe hypothesis gains favour”

• **Faintest spectra most redshifted**
 Evidence of expansion? (retrospective)

• **41 redshifts by 1922**
 Published by Eddington, Strömberg

\[\Delta \lambda / \lambda = v / c \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N.G.C. 221</td>
<td>-300 km.</td>
<td>N.G.C. 4526</td>
<td>+580 km.</td>
</tr>
<tr>
<td>224</td>
<td>-300</td>
<td>4565</td>
<td>+1100</td>
</tr>
<tr>
<td>598</td>
<td>-260</td>
<td>4594</td>
<td>+1100</td>
</tr>
<tr>
<td>1023</td>
<td>+300</td>
<td>4649</td>
<td>+1000</td>
</tr>
<tr>
<td>1068</td>
<td>+1100</td>
<td>4736</td>
<td>+290</td>
</tr>
<tr>
<td>2683</td>
<td>+400</td>
<td>4826</td>
<td>+150</td>
</tr>
<tr>
<td>3031</td>
<td>-30</td>
<td>5005</td>
<td>+900</td>
</tr>
<tr>
<td>3115</td>
<td>+600</td>
<td>5035</td>
<td>+450</td>
</tr>
<tr>
<td>3379</td>
<td>+780</td>
<td>5194</td>
<td>+270</td>
</tr>
<tr>
<td>3521</td>
<td>+730</td>
<td>5236</td>
<td>+500</td>
</tr>
<tr>
<td>3623</td>
<td>+800</td>
<td>5866</td>
<td>+650</td>
</tr>
<tr>
<td>3627</td>
<td>+650</td>
<td>7331</td>
<td>+500</td>
</tr>
<tr>
<td>4258</td>
<td>+500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II General relativity (1915)

- **Space+time = space-time**

 Spacetime dynamic (1905)

- **Spacetime distorted by mass**

 Distortion causes other mass to move

- **Gravity = curvature of space-time**

 \[G_{\mu\nu} = \nabla T_{\mu\nu} \]

- **Dyson/Eddington expeditions (1919)**

 Measure bending of light?

 Successful result

 General relativity well-known
Apply relativity to the cosmos (1917)

Einstein model (1917)
- Homogenous fluid of uniform density
- Equations predict dynamic universe
- No evidence for such a universe
- Add cosmic constant – ‘static’
- Closed curvature, finite radius

\[G_{\mu \nu} + \lambda g_{\mu \nu} = \frac{8\pi G}{c^4} T_{\mu \nu} \]

De Sitter (1917)
- ‘Empty’ universe
- Apparently static (co-ordinate system)
- Cosmic constant determined by curvature of space
- Redshifts due to time dilation/matter

Disliked by Einstein: Mach’s principle
Redshifts and the de Sitter model

Karl Wirtz (1922,24)

Redshifts of nebulae increasing with distance

Dispersal effect? $v = 2200 - 1200 \log (Dm)$

Ludwik Silberstein (1924)

Relation between redshifts, distance, curvature

$\Delta \lambda/\lambda = +/- r/R$ (global clusters)

Knut Lundmark (1924,25)

Velocity against distance; clusters, nebulae

Gustav Strömberg (1925)

*Vel/dist relation for globular clusters, nebulae?
Friedmann universes (1922, 24)

- Allow time-varying solutions to the field equations
 - Allow cosmic constant
 - All possible universes

- Geometry, evolution depends on matter
 - Positive curvature (1922)
 - Hyperbolic curvature (1924)

- Hypothetical models (Zf. Ph.)
 - To be decided by astronomy

- Disliked by Einstein
 - Correction and retraction

Ignored by community
The distances of the nebulae (1925,26)

- **Hooker telescope (Mt Wilson)**
 100-inch reflector (1917)

- **Edwin Hubble (1921)**
 Ambitious and dedicated astronomer

- **Resolved Cepheid stars in nebulae (1925)**
 Leavitt’s period-luminosity relation
 Standard candle

- **Spirals beyond Milky Way**
 Nebulae = galaxies
 Beginning of end of ‘Great Debate’
Is there a redshift/distance relation for galaxies?

Motivation: establishing distance to the galaxies

Combine 24 nebular distances with redshifts

Redshifts from Slipher: not acknowledged

Approx linear relation (Hubble, 1929)

Some errors (Peacock)
Most important point not shown

What do the redshifts mean?

Reference to de Sitter universe

\[H = 585 \text{ km s}^{-1} \text{ Mpc}^{-1} \]
III An expanding universe? (1930-)

• RAS meeting (1930)
 Eddington, de Sitter
 Distances and redshifts of the nebulae
 Einstein, de Sitter models don’t fit

• Lemaître letter
 Reminds Eddington of his 1927 model
 Eddington, de Sitter impressed

• Expansion of space-time metric?
 Considered by many theoreticians
 If redshifts are velocities (Zwicky)
 If effect is non-local
 Not accepted by astronomers (Hubble)
Lemaître’s universe (1927)

- **Redshifts of galaxies** = cosmic expansion?

 Rate of expansion from ave. distance and redshift

 \[H = 585 \text{ km/s/Mpc} \]

- **Matter-filled \(U\) of increasing radius**

 de Sitter model not static (1925)

 New evolving solution: Einstein → deS

- **No beginning: indefinite age**

 Starts from Einstein universe at \(t = -\infty \)

- **Rejected by Einstein**

 An idea whose time had not yet come

Fr Georges Lemaître

Not an empirical law
Edited in 1931 translation
Dynamic models of the cosmos (1931,32)

• **Eddington (1930, 31)**
 On the instability of the Einstein universe
 The Eddington-Lemaître model
 Expansion caused by condensation?

• **de Sitter (1930, 31)**
 Expanding universes of every flavour
 Further remarks on the expanding universe

• **Tolman (1930, 31)**
 On the behaviour of non-static models
 Expansion caused by annihilation of matter?

• **Einstein (1931, 32)**
 Friedmann-Einstein model $\lambda = 0, k = 1$
 Einstein-deSitter model $\lambda = 0, k = 0$
 If redshifts represent velocities…
 If effect is non-local …
Einstein’s 1931 model \((F-E)\)

- Instability of static universe

 Eddington’s paper

- Hubble’s observations

 Expanding cosmos

 Remove cosmic constant?

- Adopt Friedmann 1922 analysis

 Time-varying universe, \(k=1, \lambda=0\)

- Age and singularity problems

 Attributes to limitations of theory
Einstein’s 1931 model (F-E)

- **Numerical estimates of radius and density**

 Use Hubble parameter

 \[P \quad 10^8 \text{ light-years, } \rho \quad 10^{-26} \text{ g/cm}^3 \]

- **Calculations problematic**

 \[H_0 \quad 500 \text{ km s}^{-1} \text{ Mpc}^{-1} : D^2 \quad 10^{-55} \text{ cm}^2 \]

- **Age estimate problematic**

 Age from Friedmann

- **Not a periodic solution**

 “Model fails at \(P = 0 \)”

\[
D = \frac{1}{c} \frac{dl}{dt} = \frac{1}{c} \frac{dP}{d\tau} \\
D^2 = \frac{1}{P^2} \frac{P_0 - P}{P} \sim \frac{1}{P^2} \quad (1a) \\
D^2 \sim \frac{K \rho_0}{3} \quad \left(\frac{P_0 - P}{P} \right) \sim \frac{1}{\rho_0} \quad (2a) \\
D^2 \sim 10^{-55} \\
\rho \sim 10^{-26} \\
P_0 \sim 10^8 \text{ L}_{\odot} \text{ Y} \\
t \sim 10^{10} (10^{11}) \text{ Y}
\]
Einstein-deSitter model (1932)

- **Remove curvature**

 Not known
 (Occam’s razor)

- **Adopt Friedmann analysis**

 Time-varying universe with $k = 0, \lambda = 0$

 Critical universe

- **Calculate critical density**

 10^{-28} g/cm3: agrees with astrophysics

- **Well-known model**

 Despite age problem
Models: observational parameters needed

- **Spatial curvature** \(k = -1, 0, 1? \)
- **Cosmic constant** \(\lambda = 0? \)
- **Deacceleration** \(q_0 = -\)
- **Density of matter** \(\rho < \rho_{\text{crit}}? \)
- **Timespan** \(\tau = 10^{10} \text{ yr}\)
- **Hubble constant** \(= 500 \text{ kms}^{-1}\text{Mpc}^{-1}? \)

What do redshifts represent?
Is expansion a local effect?

Hubble and Tolman 1935
The formation of galaxies

- **Growth in static medium**

 Natural fluctuations in density

 Exponential growth by gravitational collapse

 \[\lambda_j = c_s / (G \rho_0 \pi)^{1/2} \]

- **Growth in expanding medium**

 Lemaître 1934, Tolman 1935

 Linear growth of density perturbations

 \[\delta \rho / \rho \propto R \]

- **Structure not from density fluctuations?**

 New mechanism needed

 Eddington-Lemaître model?
An origin for the universe?

- **Rewind Hubble graph**

 U smaller in the past

- **Extremely dense, extremely hot**

 Expanding and cooling since
 Evolving universe

- **Age problem**

 Younger than stars?

- **Singularity problem**

 Breakdown of theory
 ∞ density, ∞ temp at $t = 0$?

The big bang
Lemaître’s hesitating universe (1931-34)

- **Primeval atom**
 Explosive expansion from radioactive decay

- **Expansion slows down**
 Positive cosmic constant
 Energy of vacuum; stagnation

- **Indefinite timespan**
 No age problem
 Formation of structure?

- **Accelerated expansion**
 de Sitter universe at large t

Cosmic rays = radiation from early universe?
IV Paradigm shift or slow dawning?

- **Hubble/Slipher**
 Empirical law for nebulae

- **Friedmann**
 Time-varying solutions

- **Lemaître**
 Theory and observation

Obs: Parsons, Huggins, Leavitt, Shapley
Models I: Einstein, de Sitter, Weyl, Lanczos, Robertson
Models II: Einstein, de Sitter, Eddington, Tolman, Robertson

Slow emergence of theory and evidence
Slow acceptance: no upsurge of interest 1935-65
IV Slow acceptance: 1940-60

- **Hot big bang** (1940s)
 - Nucleosynthesis in the infant universe?
 - Background radiation from early universe?

- **Little interest from community**
 - No interest from Lemaître, Einstein
 - No search for the cosmic radiation

- **Steady-state universe** (1948)
 - Continuous creation of matter from vacuum
 - No age or singularity problems

- **Later ruled out by experiment**
 - Radio-galaxy counts (long investigation)
 - Cosmic microwave background (Penzias and Wilson)
Cosmic background radiation

- **Search for radio signals**

 Large, sensitive receiver

- **Universal signal (1965)**

 From every direction

- **Low frequency (microwave)**

 Low temperature (3K)

- **Echo of big bang**

 Radiation from early universe

 BB model goes mainstream
Paradigm shift or slow dawning?

Revolutionary v normal science

Normal science interspersed by revolutions

The paradigm shift

Change of worldview

Social factors important

Incommensurability

New worldview incommensurate with old

Exp U:慢 exploration of theory and observation

Slow acceptance of new paradigm (1960s)
Coda: Einstein's steady-state model

- **Non-static line element (1930)**

- **Age problem**
 Conflict with stellar ages

- **Non-evolving universe**
 Constant matter density
 Continuous creation of matter
 Associated with λ; energy of space

- **Not published**
 No creation term: null solution
V Cosmology today

- **Satellite measurements of CMB**

 No interference from atmosphere

- **Expected temperature**

 Expected frequency

- **Full spectrum**

 Perfect blackbody spectrum

- **Perturbations**

 Variation of 1 in 10^5
Planck Satellite (ESA): Results

COBE

WMAP

Planck
1. Improved sensitivity
\[\frac{\Delta T}{T} \approx 1 \times 10^{-6} \]

2. Full spectrum of \(T \) anisotropy
 - New acoustic peaks: scale invariance?
 - Accurate values for \(\Omega_\Lambda, \Omega_M \)

3. Gravitational lensing
 - Remove degeneracies

4. Polarization measurements
 - \(E \)-modes: fluctuations
 - \(B \)-modes: gravity waves?
Planck results (2013)

1. **New Hubble constant**

 \[H_0 = 67.3 \pm 1.2 \text{ km/s/Mpc} \]

 Age = 13.8 billion yr

 No age conflict with astrophysics

2. **Curvature: flat**

 \[\Omega_k = -0.0005 \pm 0.07 \]

3. **Positive cosmic constant**

 \[\Omega_\Lambda = 68\% \]

4. **New mass/energy parameters**

 \[\Omega_{DM} = 27\%, \quad \Omega_{OM} = 4.9\% \]
Planck Results

1. Power spectrum
 Not scale invariant \(n_s = 0.96 \)

2. Compatible with inflation
 Simple ‘slow-roll’ models
 Higgs-type field?

3. Complex inflation out
 Double field out
 Hybrid models out
 Cyclic models out
The big bang model - questions

- Nature of dark energy?

 Role in BB?

- Nature of dark matter?

 Particle experiments?

- Which model of inflation?

 The multiverse?

- The singularity problem

 What banged?
 What does time zero mean?

The case is never closed
Tolman’s annihilation of matter

- **Non-static line element (1930)**

 Einstein, de Sitter models ruled out

- **Cause of cosmic expansion?**

 General evolutionary process

 Transformation of matter into radiation

- **Rate of transformation**

 From Hubble’s law and from stellar physics

- **Influenced Einstein**

 Steady-state model

\[k = 5\times 10^{-10} \text{ yr}^{-1} \]