A dialogue about how we are shaping the future of the planet

Cormac O’Raifeartaigh (FRAS)
‘Laudato Si’

I “What Is Happening to Our Common Home?”
 Environmental degradation and climate change

II “The Gospel of Creation”
 No biblical justification for anthropocentrism

III “The Human Roots of the Ecological Crisis”
 A technocratic paradigm

IV “Integral Ecology”
 Awareness of the interconnectedness of creation

V “Lines of Approach and Action”
 Imperative to switch from fossil fuels to renewables

VI “Ecological Education and Spirituality”
 Consumer choices, priorities - education
“What Is Happening to Our Common Home?”

I Pollution and climate change

II The issue of water

III Loss of biodiversity

IV Decline in the quality of human life

V Global inequality

VI Weak responses

VII A variety of opinions
“What Is Happening to Our Common Home?”

- Climate change in context
 - Pollution: environmental degradation
 - Depletion of freshwater: loss of biodiversity

- Climate as ultimate environmental threat
 - True nature of challenge
 - Unlike Dyson, Lomborg

- Science of global warming
 - The scientific verdict

- Science left to the scientists
Climate vs Weather

- **Long-term trends**

 Is the global climate of 1900-1950 different from 1950-2010?

- **Global trends**

 Not local phenomenon

- **Parameters**

 Air temperature: ocean temperature

 Ice-melt (land, sea): sea level

 Heat ≠ temperature

Do trends in different variables agree?
The data

Global warming (1900-2010)
- Surface temperature (land, sea): up
- Ocean temperature: up
- Ice-melt (land): up
- Ice-melt (sea): up
- Sea level: up

Clear trend in different variables
- Independent lines of evidence
- Different datasets
- Different uncertainties/errors
Ice-melt (land and sea)

- Glacier melt
- Ice sheet melt (both poles)
- Sea-ice melt (arctic)

Ice melt → sea level rise

Accelerated warming

Greenland ice sheet

Retreat of the glaciers

Arctic sea-ice
Cause of warming: the greenhouse effect

Mercury: closest to the sun

Venus: much hotter

Explanation: Venus has a large greenhouse effect.
The greenhouse effect

Atmosphere is transparent to most of sun’s heat

But: radiation outward from earth absorbed
Earth’s greenhouse gases

• Nitrogen and oxygen do not absorb heat
 Not greenhouse gases

• Water vapour (H_2O): 0.2 – 4.0 %
 Evaporation from oceans

• Carbon dioxide (CO_2): 0.039% (390 ppm)
 Animals and plants, fossil fuels

• Methane (CH_4): 1.8 ppm (2010)
 Wetlands, animals, agriculture, fossil fuels

$CO_2 = \text{most abundant non-condensing GHG}$
Monitoring carbon dioxide

- **Charles Keeling** (1950 -)
 - CO$_2$ from industry?
 - Absorbed by oceans?
 - Direct measurement (Mauna Loa)

- **Burning fossil fuels releases energy**
 - Also releases CO$_2$ into atmosphere

- **Buildup of CO$_2$ in atmosphere**
 - Increase of 40% from 1850

Systematic increase (1958 -)

![Atmospheric Carbon Dioxide](image)
CO$_2$ and fossil fuels

- Fossils formed when plants buried before respiration
- Stored in rock reservoirs; subject to intense heat and pressure
- Digging up and burning fossilized carbon releases energy
- Also releases CO$_2$ into atmos.

Flux from fossil fuels: 6 GtC/yr

- Identify by radioactive dating
- Buildup of CO$_2$ in atmosphere

Increase of 40% from 1850
Direct evidence

1. Measure E_{out} of atmosphere

 Function of wavelength, time

 Satellite measurements (1970 -)

 Clear dip in microwave region
 Clear increase in dip over 4 decades

2. Measure T of atmosphere

 Function of height

 Stratosphere cooling

 Clear signals of greenhouse effect

Radiation from earth
Conclusions

1. Multiple lines of evidence for warming
 Surface temps, ocean temps, sea-level rise, ice melt

2. Multiple lines of evidence for enhanced GHG effect
 CO₂ increase, radioactive dating, wavelength of absorbed radiation, stratospheric cooling

Conclude: (IPCC 2007)

Most of the warming since 1950 very likely (90% prob) due to increase in GHG conc

Expect rise of 2-6 °C by 2050
The future: IPCC scenarios

- **Continued emissions**

 Four scenarios

- **Committed warming**

 Already in the pipeline

- **Future warming**

 2-6 °C by 2050

 Worst case scenarios

- **Actually worse again**

 Feedbacks and tipping points
Climate feedbacks

- Reduced albedo
 Melting of ice sheets reduces reflectivity

- Reduced permafrost
 Releases methane and CO2

- Ocean vents
 Release of methane from ocean vents

- Tipping points
 Past climates show accelerated warming
Consequences

- Increased drought, desertification
 Africa, USA, Australia

- Increased flooding
 China, India, Bangladesh, Tuvulu
 Poorest worst affected (Robinson)

- Frequent extreme events
 Warmer air holds more moisture

- War
 Longterm conflicts over resources
 Large scale emigration
Fixing climate

- **Reduce GHG emissions**
 - Reduce fossil fuel use
 - Remove fossil fuel subsidies
 - Reduce hydraulic fracking

- **Impose international targets**
 - Developed vs developing nations
 - Concerted global action

- **Invest in renewable energy**
 - Increase subsidies for renewables
 - Create climate of investment
 - Economics based on sound science

Unsound science
Climate skepticism

- ‘It’s just a theory’

 Role of evidence misunderstood

- Media discussions poor/biased

 Expertise vs opinion or vested interest

- Opposition from ff industry

 Lobbyists, propagandists

- Resistance from politics

 Conservative values
Summary

- **A clear and present danger**

 Action required

- **Understood by scientists**

 Clear solution (difficult)

- **Not accepted by society**

 Lack of knowledge or trust in science

 Influence of politics, lobbyists and the media

- **Prognosis poor**

 No solution without acceptance