Trust, Uncertainty and Society

The Public Perception of Scientific Uncertainty in the Climate Science Debate

Cormac O’Raifeartaigh (FRAS)
Overview

I Uncertainty in measurement
 Perceptions

II Uncertainty in prediction
 Perceptions

III Some climate science
 Perceptions

IV Climate change
 Perceptions
 A provocative idea
I Uncertainty in measurement

- Measuring temperature
 - 19 °C
 - (19 +/- 1) °C

- Conclusions
 - Not very accurate (10% error)
 - Observer-independent
 - Knowledge of uncertainty key (18.3 °C?)

- Strategies
 - Different instrument? Reduced uncertainty?
Perceptions

- **Uncertainty is not peripheral**

 Core part of experimentation
 Not very well understood in SSK

- **Random vs systematic error**

 Quantifying the error
 The BEST project (2011)

- **Comparisons**

 Uncertainties in economics
 Uncertainties in accountancy

 Growth forecast: (2 +/- 0.5) %

Harry Collins, Trevor Pinch
II Uncertainty in prediction

“Prediction is very difficult, especially about the future”
- Niels Bohr (Yogi Berra)

“Balderdash”
- CO’R, WEXT Conference, 2017

Some events more predictable than others
Tomorrow will be Saturday etc.

Laws of science are laws of prediction
Perceptions

- **Laws of science are predictive**
 Orbits of planets, solar eclipses

- **Not just a theory…**
 Logical framework
 The role of observational evidence

- **Central role for prediction**
 Discriminating between theories
 Core aspect of science

Technology!
Some climate science

- **Theory**
 - Global models not complicated
 - Main factors well understood (unlike big bang)

- **Observables**
 - Air temperature, ocean temperature
 - Sea level, ice-melt

- **Long-term variations**
 - 1950-2010 vs 1900-1950

- **Large planetary areas**

Climate ≠ weather
Only three factors in global climate!

- **The sun**
 Solar cycles, earth’s orbit

- **The albedo effect**
 Different for different planets
 Earth: ~ 30%

- **The atmosphere**
 Trapping of reflected heat

Table 4.1 Data on the four inner planets in our solar system

<table>
<thead>
<tr>
<th>Planet</th>
<th>Solar constant (W/m²)</th>
<th>Albedo</th>
<th>Observed surface temperature (K)</th>
<th>Inferred n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>10,000</td>
<td>0.1</td>
<td>452</td>
<td>0.052</td>
</tr>
<tr>
<td>Venus</td>
<td>2,650</td>
<td>0.7</td>
<td>735</td>
<td>82</td>
</tr>
<tr>
<td>Earth</td>
<td>1,360</td>
<td>0.3</td>
<td>289</td>
<td>0.65</td>
</tr>
<tr>
<td>Mars</td>
<td>580</td>
<td>0.15</td>
<td>227</td>
<td>0.22</td>
</tr>
</tbody>
</table>
The greenhouse effect

- Atmosphere is transparent to solar radiation but absorbs infra-red
- Radiation from earth **absorbed**
 Re-emitted towards earth
- Atmosphere acts as blanket
 Earth is warmed by sun + atmos
A little chemistry…

Nitrogen (N_2): 78%
Oxygen (O_2): 21%
Argon (Ar): 1%

• Do not absorb in UV or IR
• Do not warm surface

• Not greenhouse gases
• Play little role in climate
Earth’s greenhouse gases

1. **Water vapour** (H_2O): [0.2 – 4.0 %] at surface
 Evaporation from oceans, decreases rapidly with height

2. **Carbon dioxide** (CO_2): 0.04% (390 ppm)
 Animal and plant exhalation, emissions from fossil fuels

3. **Methane** (CH_4): 1.8 ppm
 From wetlands, animals, agriculture, fossil fuels

4. **Nitrous oxide** (N_2O): 0.3 ppm
 Fertilizer and natural sources

CO_2 = most abundant non-condensing GHG
Recording CO$_2$

- **Keeling Curve (1950 -)**

 CO$_2$ emissions increasing?

 Clear trend (Mauna Loa)

- **Expected effects?**

 Enhanced greenhouse effect

 Some absorption (50%)

 Climate sensitivity?

- **Alternative models of gw**

 Need 2 theories!
CO₂ and fossil fuels

- Fossils formed when plants buried before respiration
- Stored in rock reservoirs; subject to intense heat and pressure
- Digging up and burning fossilized carbon releases energy
- Also releases CO₂ into atmos.

Flux from fossil fuels: 6 GtC/yr

- Much larger than volcano cycle
- Buildup of CO₂ in atmos.
- Increase of (40 +/- 0.5) % from 1850
Identification of CO₂

- **Compare CO₂ rise with fossil fuel use**
 Strong correlation

- **Measure age of CO₂**
 Radioactive dating using C13 and C14
 Significant portion millions of years old

- **Conclude CO₂ rise from fossil fuels**
IV Climate change

1. Surface temperature record
 - one test of climate change
 - oldest measurements, largest dataset
 - average of many stations around globe

Relative measurement
- measure relative to benchmark
- temperature anomaly
- ground data + satellite data

1906-2005: + 0.74 °C/century
1950-2005: + 1.3 °C/century

Rate increasing
2. Ocean temp record
 1-4 km depth
 Mixed layer and deep ocean

 • Rising over the past few decades
 Small rise
 Large heat capacity of water
 Large oceans

 • Most warming occurs in oceans
 Heat ≠ temperature
Ice-melt (land and sea)

- Glacier melt
- Ice sheet melt (both poles)
- Sea-ice melt (arctic)

Total melt → sea level rise 100m
Sea levels

Test for sea level rise:

- Melting of land ice
- Thermal expansion of water
- Changes in water stored on land

Results

- Sea level risen by + 15 cm/cent
- Past 40 years: + 1.8 cm/decade
- Past 10 years: + 3.1 cm/decade

Global annual average sea-level anomaly
GW summary

Observations
- Surface temperature (land, sea): up
- Ocean energy: up
- Ice-melt (land): up
- Ice-melt (sea): up
- Sea level: up

Clear trend in different variables
- Independent lines of evidence
- Different datasets/teams
- Different uncertainties/errors

Concordance
The future (IPCC)

Continued emissions

Four scenarios (A2 = BAU)

Committed warming

Already in the pipeline

Future warming

2-6 °C by 2100

Depends on climate sensitivity

Alarmist?

Feedbacks not included
Climate feedbacks

- **Reduced albedo effect**
 Melting of ice sheets reduces reflectivity

- **Reduced permafrost**
 Releases methane and CO₂

- **Ocean vents**
 Release of methane from ocean vents

- **Tipping points**
 Past climates show accelerated warming
Expectations

- **Increased drought, desertification**
 Africa, Australia, USA

- **Increased flooding**
 China, India, Bangladesh
 Robinson: poorest worst affected

- **Frequent extreme events**
 Warmer air holds more moisture

- **Global refugee problem**
 Not acknowledged
A problem of perception

- **Media discussions poor/biased**
 - Opinionism vs journalism (weather)
 - Critical thinking and The History Boys

- **Resistance from industry**
 - Lobbyists, propagandists

- **Resistance from politics**
 - Conservative, nationalist values

- **Clear effect**
 - Low acknowledgement of problem

‘It’s just a theory’
Prognosis

- **A clear and present danger**
 Well understood (unlike big bang model)

- **Urgent action required**
 Sluggish

- **Problem of perception**
 Climate vs weather
 Vested interests, politics

- **Prognosis poor**
 No solution without trust
 No trust without knowledge?
What should be shown

1. Measure E_{out} of atmosphere
 - Function of wavelength, time
 - Satellite measurements (1970 -)
 - Clear dip in microwave region
 - Clear increase in dip over 4 decades

2. Measure T of atmosphere
 - Function of height
 - Stratospheric cooling

Clear signals of enhanced greenhouse effect
Climate and tobacco

- Dangers of smoking understood early on
 Research results clear from 1950s

- Strongly contested by tobacco industry
 Industry experts, scientists

- Media wars, PR wars
 Doubt is our product

- Same tactics for climate science
 Heartland Institute

Countdown issue?
The longterm future

- **Continued emissions**

 Slow removal of CO_2 from atm/bios/ocean system

- **Peak warming**

 Fossil fuels finite: peak around 2100
 Some delay due to fracking
 Major new threat to climate

- **Future warming**

 Climate for the next thousand years
Fixing climate

- **Reduce GHG emissions**
 - Reduce fossil fuel use
 - Remove fossil fuel subsidies
 - Reduce hydraulic fracking

- **Impose international targets**
 - Developed vs developing nations
 - Concerted global action

- **Invest in renewable energy**
 - Increase subsidies for renewables
 - Create climate of investment
 - Economics based on sound science

Unsound science
Renewables

- Nuclear energy
- Biofuels
- Wind energy
- Solar energy
- Tidal energy
- Long-term promise?
- Hydroelectric
- 2nd, 3rd generation

Sources of energy
- Nuclear
- Natural gas
- Renewable
- Oil

%
- Nuclear: 37%
- Natural gas: 21%
- Renewable: 25%
- Oil: 9%
- Coal: 8%

Renewable energy as share of total primary energy consumption, 2010

- Biomass and biofuels: 14%
- Hydroelectric: 20%
- Wind: 1%
- Geothermal: 3%
- Solar/photovoltaic: 1%
- Percentage of renewable energy: 21%
Climate controversy

- **Hockey-stick controversy**
 Medieval warm period inaccurate?
 Contested by conservative think tanks

- **Complex science**
 Ice cores, tree rings, ocean sediments
 Vindicated by many studies

- **Climategate controversy**
 Hacked emails - fake controversy
 Exploited by conservative media
 Prevented agreement at COP 2009
The future

$$\text{CO}_2 \text{ emitted} = \text{pop} \times \text{affluence} \times \text{tech}$$

IPAT

- $P \times A = \text{energy required}$
 - *Population growth*
 - *Affluence growth*

- Technology = GHG emitted/$$
 - *Carbon intensity x energy intensity*
 - Tends to decrease

Net effect: large increase in emissions
Climate change?

- **Long-term variation**

 Is the global climate of 1955-2015 different from 1900 - 1955?

- **Observational parameters**

 Air temperatures; ocean temperatures

 Ice-melt (land, sea); sea level

- **Climate science**

 Basic principles

 What do we expect?

Climate ≠ weather

Heat ≠ temperature
Conclusions

1. Multiple lines of evidence for warming
 Surface temps, ocean temps, sea-level rise, ice melt

2. Multiple lines of evidence for enhanced GHG effect
 CO\textsubscript{2} increase, radioactive dating, wavelength of absorbed radiation, stratospheric cooling

Conclude: (IPCC 2007)
Most of the warming since 1950 very likely (90\% prob) due to increase in GHG conc
Expect rise of 2-6 °C by 2050