The big bang – is it true?

Theory, models and evidence in 20th century physics

Cormac O’Raifeartaigh FRAS (WIT)
The big bang model

- \(U \) was once superdense and superhot
- Expanding and cooling over time

The evidence

- The runaway galaxies; the abundance of the elements
- The distribution of the galaxies; the background radiation

The theory

- Cosmology and the general theory of relativity

What does a historian do?

- Review how models develop
- Consider roads not taken
1st evidence: Hubble’s law

- The recession of the galaxies
- Linear relation between redshift (velocity) and distance
- Hubble’s Law (1929)

Far-away galaxies rushing away at a speed proportional to distance

\[v = H_0d \]
Motion of galaxies: redshift

frequency of light depends on motion of source relative to observer

Doppler Effect

measure motion of stars and galaxies from light emitted

Vesto Slipher (1915)
The distance of the galaxies

- Identification of Cepheid variables stars in spiral nebulae (1925)
- Use of Leavitt period-luminosity method
- Nebulae far beyond Milky Way
- Distinct galaxies
Explanation for runaway galaxies?

Newton

- Gravity pulls in not out
- Space is fixed

How can galaxies be receding?

What is pushing out?
Modern theory of gravity

General theory of relativity (Einstein, 1915)

- space + time not fixed
- **spacetime**
- affected by motion
- affected by mass

\[G_{\mu\nu} = -kT_{\mu\nu} \]

gravity = curvature of space-time
Relativistic cosmology

- **Alexander Friedman (1922)**
 - *Time-varying solutions for the cosmos*
 - Expanding or contracting universe

- **Evolving universe**
 - *Time-varying radius and density of matter*
 - Rejected by Einstein

- **Georges Lemaître (1927)**
 - Relativistic universe of expanding radius
 - Agreement with emerging astronomical data
 - Also rejected by Einstein

Why?
The paradigm shift (1930)

- RAS meeting (1930)
 Eddington, de Sitter
 If redshifts are velocities and effect is non-local

- Hubble’s law = expansion of space?
 Static models don’t fit data
 Dynamic relativistic models required

- Friedman-Lemaître models accepted
 Time-varying radius
 Density of matter decreases

Evidence now favourable
The Friedman-Einstein model

- Einstein’s first expanding model (1931)
 Friedman model with cosmological constant set to zero
 First English translation

- Use Hubble to extract parameters
 Cosmic radius $R \sim 10^8$ LY
 Density of matter $\rho \sim 10^{-26}$ g/cm3
 Timespan of expansion: 10^{10} yr

- Numerical error in calculations
 Source of error not clear

- Made clear on Oxford Blackboard
 Nature of error clear on blackboard
The first ‘big bang’ model (1931)

- Expanding U smaller in the past
- Rewind Hubble graph to ‘origin’
- Extremely dense, extremely hot
- Explosive beginning at $t = 0$?

 Expanding and cooling ever since

Fr Georges Lemaître

Not accepted
A second piece of evidence

- How did the chemical elements form?
- Nuclear physics (1940s)
- Not in the stars

- In Lemaître’s infant universe?
- \(H, He \) nuclei (1 s)

- \(U = 75\% H, 25\% He \)
- Agrees with observation

Big bang nucleosynthesis
A third piece of evidence?

- Radiation from infant universe
- Released when atoms formed (300,000 yr)
- Still observable today?

 Low temp, microwave frequency

 No-one looked (1948); why not?

Alpher, Gamow and Herman
Steady-state model (1950s)

- Rival model
- Expanding universe

BUT

- Matter continuously created
- No beginning

Fred Hoyle
A famous debate (1950-1965)

- Bitter debate between BB and SS
- Radio-astronomy: study most distant galaxies
- Compare with local galaxies

- Distribution the same at all times? (SS)
- Or different? (BB)

Answer: different

End of steady-state model
Bonus: cosmic background radiation

CMB discovered accidentally

- Universal signal (1965)
- Low frequency (microwave)
- Low temperature (3K)

Echo of Big Bang!
Einstein’s lost theory uncovered
Physicist explored the idea of a steady-state Universe in 1931.

Davide Castelvecchi
24 February 2014

New Discovery Reveals Einstein Tried To Devise A Steady State Model Of The Universe

Almost 20 years before the late Fred Hoyle and his colleagues devised the Steady State Theory, Albert Einstein toyed with a similar idea: that the universe was eternal, expanding outward with a consistent input of spontaneously generating matter.

An Irish physicist came across the paper last year and could hardly believe a model of the universe very different to today’s Big Bang Theory.

The manuscript, which hadn’t been referred to by scientists for decades,
The big bang – is it true?

√ 1. The expansion of the U

√ 2. The abundance of H and He

√ 3. The distribution of galaxies

√ 4. The cosmic background radiation

Superhot, superdense

Expanding and cooling over time
Cosmology today

- **Satellite measurements of CMB**
 No interference from atmosphere

- **Expected temperature**
 Expected frequency

- **Full spectrum**
 Perfect blackbody spectrum

- **Perturbations**
 Variation of 1 in 10^5

COBE satellite (1992)

- **Radiated Intensity per Unit Wavelength**

 - Fit of blackbody curve for $T = 2.74$ K
 - Cosmic background data from COBE
Detailed big bang model: Λ-CDM

A universe containing ordinary matter, dark matter and dark energy

1. Ordinary matter: 4% (astrophysics)
2. Dark matter: 22% (astrophysics)
3. Dark energy: 74% (supernova, CMB)

$\Omega = 1$
Dark Matter

- First suggested in 1930s
- Stellar motion

normal gravitational effect but cannot be seen directly

- Explains motion of stars
- Explains motion of galaxies
- Explains gravitational lensing

\[\text{Matter} = \text{OM (30\%)} + \text{DM (70\%)}\]

\[\Omega = 0.3\]

Compatible with nucleosynthesis
Dark energy

- Furthest galaxies too far away
- Cosmic expansion **accelerating**
- Energy of vacuum?
- Not well understood

Predicted in 1917
The big bang model - problems

- **Nature of dark energy?**
 - *Role in BB?*

- **Nature of dark matter?**
 - *Particle experiments?*

- **The singularity problem**
 - *What banged?*
 - *What does time zero mean?*

Intersection of history with today’s science